Dipotassium(I) Cyclooctatetraenide-1-Methoxy-2-(2-methoxyethoxy)ethane

By J. H. Noordik and Th. E. M. van den Hark
Crystallography Laboratory, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands
and J. J. Mooij and A. A. K. Klaassen
Department of Physical Chemistry, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands

(Received 1 November 1973; accepted 26 November 1973)

Abstract

K}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right) .\left(\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\), $\left(\mathrm{K}_{2} \mathrm{COT}\right.$.diglyme), orthorhombic, Pnma, $a=7.689$ (3), $\quad b=$ 15.376 (5), $c=13.703$ (5) \AA (from diffractometer data), $Z=4, D_{x}=1 \cdot 30 \mathrm{~g} \mathrm{~cm}^{-3}$. The packing of the K^{+}and COT^{2-} ions may be described as a zigzag chain of $\mathrm{K}_{2} \mathrm{COT}$ units. This chain is in the direction of the a axis and is embedded in a diglyme environment. Only one potassium ion of each $\mathrm{K}_{2} \mathrm{COT}$ unit is coordinated by the complexing ether, diglyme.

Introduction. The crystals were prepared under exclusion of air and water by slowly adding a mixture of diglyme and tetrahydrofuran (THF) ($1: 2$) to a 0.8 mol $\mathrm{K}_{2} \mathrm{COT}$ solution in THF. After one day single crystals separated out. The results of an elementary analysis are K, $24.60(24.71), \mathrm{C}, 52.82(53 \cdot 12)$ and $\mathrm{H}, 7.07(7.01) \%$. (Values in parentheses are the calculated ones.) The crystals are very sensitive to air. Therefore they were mounted in paraffin (m.p. $42-44^{\circ} \mathrm{C}$) in thin-walled glass capillaries under a He atmosphere. Unit-cell dimensions and intensities were obtained from a crystal of approximate dimensions $0.4 \times 0.3 \times 0.2 \mathrm{~mm}$, with a computer-controlled Nonius CAD-3 diffractometer ($\mathrm{Cu} K \alpha$ radiation, Ni-filtered, $\theta-2 \theta$ scan). Systematic absences were $0 k l$ for $k+l$ odd, and $h k 0$ for h odd. Space group Pnma or its acentric counterpart $P n 2_{1} a$ are the only choices which are consistent with these conditions. The statistics of the E values (prepared for use in MULTAN) indicated the centrosymmetric space group Pnma. All intensities in two symmetryrelated octants up to $\theta=50^{\circ}$ were measured. Averaging
the symmetry-related reflexions gave 1071 unique observations. 9 reflexions were omitted because of a very large discrepancy between the individual measurements. Of the 1062 unique reflexions, 472 had a significant intensity $\left[I>3 \sigma_{c}(I), \sigma_{c}(I)\right.$ derived from counting statistics]. The intensity data were reduced to structure amplitudes by application of Lorentz and polarization factors. Values for $\sigma(F)$ were calculated according to the formula $\sigma(F)=\left[\sigma_{c}^{2}(F)+\left(0.05 F_{\text {obs }}\right)^{2}\right]^{1 / 2}$. The structure was determined by direct methods applying the program MULTAN (Germain, Main \& Woolfson, 1971) and refined by full-matrix least-squares methods, with anisotropic thermal parameters. Hydrogen atoms were not included in the refinement or in the structure-factor calculation, because no trace of them appeared on a final difference map. The quantity minimized was $\sum w\left(\left|F_{o}\right|-K\left|F_{c}\right|\right)^{2}$ with $w=1 / \sigma^{2}(F)$. The final refinement resulted in a residual, R, of 0.099 for 472 reflexions. Final atomic parameters are given in Table 1. The atomic scattering factors used were those for K^{+} (corrected for anomalous scattering Δf^{\prime}), O and C as given in International Tables for X-ray Crystallography (1962).*

Discussion. As part of a programme carried out by the Department of Molecular Spectroscopy at this Uni-

[^0]Table 1. Final atomic parameters (with e.s.d. in parentheses)
The estimated standard deviations are those obtained from the least-squares refinement. The expression used for the anisotropic thermal parameters is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} I^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k\right)\right]$.

	X/a	Y / b	Z/c	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
K(1)	$0 \cdot 2959$ (7)	-0.25	$0 \cdot 7496$ (5)	$0 \cdot 0120$ (10)	0.0112 (5)	$0 \cdot 0059$ (4)		0.0002 (7)	
K(2)	$0 \cdot 3046$ (7)	-0.25	0.3999 (4)	$0 \cdot 0165$ (11)	$0 \cdot 0033$ (3)	0.0058 (4)		-0.0000 (6)	
C(1)	$0 \cdot 518$ (2)	-0.203 (1)	0.579 (1)	0.016 (3)	0.008 (1)	0.006 (1)	-0.002 (2)	0.002 (2)	-0.001 (1)
C(2)	$0 \cdot 386$ (3)	-0.139 (1)	$0 \cdot 580$ (1)	0.021 (4)	0.006 (1)	0.006 (1)	-0.002 (2)	0.001 (3)	-0.000 (1)
C(3)	$0 \cdot 205$ (3)	-0.140 (1)	0.578 (2)	0.021 (4)	0.008 (1)	$0 \cdot 008$ (2)	0.001 (2)	$0 \cdot 002$ (3)	0.000 (1)
C(4)	$0 \cdot 080$ (2)	-0.205 (1)	0.576 (1)	0.010 (3)	0.007 (1)	0.006 (1)	$0 \cdot 002$ (1)	0.001 (2)	-0.001 (1)
C(5)	0.279 (3)	-0.171 (1)	0.153 (2)	0.027 (5)	0.007 (1)	0.008 (1)	-0.006 (2)	0.001 (3)	0.001 (1)
C(6)	$0 \cdot 190$ (3)	-0.092 (1)	$0 \cdot 197$ (2)	0.027 (5)	0.005 (1)	0.009 (2)	$0 \cdot 000$ (2)	-0.004 (3)	-0.050
$\mathrm{C}(7)$	$0 \cdot 189$ (3)	-0.013 (1)	0.345 (2)	0.035 (5)	0.003 (1)	0.017 (2)	$0 \cdot 002$ (2)	$0 \cdot 005$ (4)	-0.002 (1)
$\mathrm{O}(1)$	$0 \cdot 194$ (2)	-0.25	$0 \cdot 192$ (1)	0.011 (3)	0.006 (1)	0.007 (1)		-0.000 (1)	
$\mathrm{O}(2)$	0.233 (1)	-0.094 (1)	$0 \cdot 299$ (1)	$0 \cdot 017$ (3)	0.005 (1)	$0 \cdot 010$ (1)	-0.000 (1)	-0.000 (1)	$0 \cdot 001$ (1)

versity for the study of alkali-metal aromatic radical ion pairs, single crystals of $\mathrm{K}_{2} \mathrm{COT}$ stabilized by the complexing ethers THF, diglyme and triglyme [1,2-bis-(2-methoxyethoxy)ethane] and single crystals of $\mathrm{Rb}_{2} \mathrm{COT}$ stabilized by diglyme were prepared. Since these crystals were not as sensitive to air as earlier prepared alkali-biphenyl crystals (Canters, Klaassen \& de Boer, 1970), we first succeeded in solving the crystal structure of $\mathrm{K}_{2} \mathrm{COT}$ stabilized by diglyme. A crystal structure analysis of sodium-biphenyl stabilized by triglyme is in progress.

The structure of $\mathrm{K}_{2} \mathrm{COT}$. diglyme is illustrated in Figs. 1 and 2. The potassium ions lie on a crystallographic mirror plane, whereas the COT ring and the diglyme molecule lie perpendicular to this plane. Thus the asymmetric unit consists of only half of the COT ring atoms and half of the diglyme atoms. The structure may be described as consisting of $\mathrm{K}_{2} \mathrm{COT}$ units that are packed in an electrostatically favourable way, forming a zigzag chain in the dilection of the a axis. This column of $\mathrm{K}_{2} \mathrm{COT}$ units is surrounded by diglyme molecules in such a way that the potassium ions outside the column [K(2) in Fig. 1] are coordinated by the diglyme, whereas the potassium ions inside the column [$\mathrm{K}(1)$ in Fig. 1] are coordinated by COT^{2-} rings. In a K ${ }_{2}$ COT unit the average $\mathrm{K}-\mathrm{C}$ distance is 2.98 (2) \AA for $K(1)$ and 3.05 (2) \AA for $K(2)$.

The shortest K-C distances of potassium ion $\mathrm{K}(1)$ to the COT rings of two other $\mathrm{K}_{2} \mathrm{COT}$ units are 3.26 (2) \AA and 3.31 (2) \AA for the distances $K\left(1^{\prime}\right)-C(1)$ and $\mathrm{K}\left(\mathrm{l}^{\prime}\right)-\mathrm{C}(4)$ respectively (Fig. 1). The diglyme molecule has normal bond distances and angles, which are summarized along with the distances concerning the coordination of potassium ion $K(2)$ in Table 2. As can be seen the $\mathrm{K}(2)$ ion is on one side coordinated by four oxygen atoms and on the other side shielded by one COT dianion. It may be compared with the glymated fluorenylpotassium contact ion pairs, studied by Smid (1972).

The cyclooctatetraene dianion is planar and has an average $\mathbf{C}-\mathrm{C}$ bond length of $1.40 \pm 0.02 \AA$. A weighted

Table 2. Bond lengths and angles for the diglyme molecule

Oxygen atom $O(1)$ is on the mirror plane and $C(7)$ is the methyl carbon atom. Single prime indicates screw-axis related atom $\left(\frac{1}{2}+x, y, \frac{1}{2}-z\right)$. Double prime indicates mirror related atom ($x, \frac{1}{2}-y, z$).
Coordination of potassium ion $\mathrm{K}(2)$

Diglyme	Distance	Diglyme	Angle
$\mathrm{O}(1)-\mathrm{C}(5)$	$1 \cdot 47(2) \AA$	$\mathrm{C}\left(5^{\prime \prime}\right)-\mathrm{O}(1)-\mathrm{C}(5)$	$111(2)^{\circ}$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 52(3)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$108(2)$
$\mathrm{C}(6)-\mathrm{O}(2)$	$1.45(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$	$105(2)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.44(2)$	$\mathrm{C}(6)--\mathrm{O}(2)-\mathrm{C}(7)$	$111(2)$
$\mathrm{K}-$ diglyme	Distance \AA	$\mathrm{K}-\mathrm{COT}$	Distance
$\mathrm{K}(2)-\mathrm{O}(1)$	$2.97(2)$	$\mathrm{K}(2)-\mathrm{C}(1)$	$3.04(2) \AA$
$\mathrm{K}(2)-\mathrm{O}(2)$	$2.82(2)$	$\mathrm{K}(2)-\mathrm{C}(2)$	$3.06(2)$
$\mathrm{K}(2)-\mathrm{O}\left(1^{\prime}\right)$	$3.25(2)$	$\mathrm{K}(2)-\mathrm{C}(3)$	$3.06(2)$
		$\mathrm{K}(2)-\mathrm{C}(4)$	$3.05(2)$

least-squares plane through the C atoms of the COT ring $(0.0139 X+0.0 Y-1.0 Z+7.89 \AA=0)$ has all of the atoms of the ring within $0.01 \pm 0.01 \AA$ of the plane. Bond lengths and angles for the COT ring together with the distances concerning the coordination of potassium ion $K(1)$ are summarized in Table 3.

Table 3. Bond lengths and angles for the COT ring
Single prime indicates screw-axis related atom $\left(\frac{1}{2}+x, y, \frac{1}{2}-z\right)$. Double prime indicates mirror-related atom ($x, \frac{1}{2}-y, z$).
Coordination of potassium ion $\mathrm{K}(1)$

COT	Distance	COT	Angle
$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime \prime}\right)$	$1.46(3) \AA$	$\mathrm{C}\left(1^{\prime \prime}\right)-\mathrm{C}(1)-\mathrm{C}(2)$	$134(2)^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.41(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$135(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.39(3)$	$\mathrm{C}(2)--\mathrm{C}(3)-\mathrm{C}(4)$	$135(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.38(3)$	$\mathrm{C}(3)--\mathrm{C}(4)-\mathrm{C}\left(4^{\prime \prime}\right)$	$136(2)$

K-COT Distanc
$\mathrm{K}(1)-\mathrm{C}(1) \quad 2.98$ (2) \AA
$\mathrm{K}(1)-\mathrm{C}(2) \quad 2.97$ (2)
$\mathrm{K}(1)-\mathrm{C}(3) \quad 2.98$ (2)
$\mathrm{K}(1)-\mathrm{C}(4) \quad 2.98$ (2)
$\mathrm{K}\left(1^{\prime}\right)-\mathrm{C}(1) \quad 3 \cdot 26(2)$
$\mathrm{K}\left(1^{\prime}\right)-\mathrm{C}(4) \quad 3.31$ (2)

Fig. 1. Projection along \mathbf{b} of the structure lying between $y=0$ and $\frac{1}{2}$. The upper half of the cell contents are related by the centres of symmetry (small circles) and have been omitted for clarity. There is a mirror plane at $y=\frac{1}{4}$.

Fig.2. Projection of the structure along the a axis. Small circles indicate inversion centres. A mirror plane lies perpendicular to the plane of projection, at $y=\frac{1}{4}$.

It is noteworthy that in contrast to the single crystals of bis(tetramethylethylenediamine)lithium(I) naphthalenide (Brooks, Wendell \& Stucky, 1972) in which we detected an e.p.r. signal probably due to the presence of a small amount of the mononegative ion of naphthalene, we were unable to detect an e.p.r. signal in the alkali COT single crystals, even after ultraviolet irradiation at low temperature: a common technique for removing electrons from radicals in solution or in a glass.

References

Brooks, J. J., Wendell, R. \& Stucky, G. D. (1972). J. Amer. Chem. Soc. 94, 7346-7351.

Canters, G. W., Klaassen, A. A. K. \& de Boer, E. (1970). J. Phys. Chem. 74, 3299-3302.

Germain, G., Main, P. \& Woolfson, M. M. (1973). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Smid, J. (1972). Angew. Chem. 84, 127-144.

The Crystal Structures of the Molecular Complexes between Benzidine and 7,7,8,8-Tetracyano-p-quinodimethane. II. The Benzidine-TCNQ Solvent-Free Complex

By Kyuya Yakushi, Isao Ikemoto and Haruo Kuroda
Department of Chemistry, Faculty of Science, The University of Tokyo, Tokyo, Japan

(Received 8 October 1973; accepted 17 November 1973)

Abstract

Monoclinic, $C 2 / m, \quad a=12 \cdot 231$ (2), $\quad b=$ 12.679 (4), $c=6.477$ (8) $\AA, \beta=94.84$ (1) , $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} . \mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~N}_{4}, Z=2, D_{x}=1 \cdot 33, D_{m}=1.32 \mathrm{~g} \mathrm{~cm}^{-3}$. Crystals were grown from a chloroform solution. BD and TCNQ are alternately stacked along the c axis to form mixed molecular columns. The structure within these columns is the same as that found in crystals of the BD-TCNQ complex containing dichloromethane [Ikemoto, Chikaishi, Yakushi \& Kuroda (1972). Acta Cryst. B28, 3502-3506], but, instead of forming a channelled structure as observed in the latter complex, the molecular columns are closely packed.

Introduction. Preliminary cell constants and space group were determined from Weissenberg and precession photographs. Since the systematic absence is $h+k=2 n+1$ for general reflexions, the space group is either $C 2 / m, C 2$ or $C m$. The precise cell constants and intensity data were measured on a Rigaku four-circle automatic diffractometer using monochromated

Fig. 1. Projection of the molecular arrangement onto the (010) plane. Molecules with centres at $y=0$ are shown by solid lines, those lying at $y=\frac{1}{2}$ are indicated by broken lines.

Mo $K \alpha$ radiation. 1163 independent reflexions in the range $20 \leq 55^{\circ}$ were measured. Of these reflexions 425 were three times as large as their standard deviations. No absorption correction was made, since the absorption effect is small ($R \mu \leq 0.05$).

The structure was solved by the Patterson method. It was refined by the block-diagonal least-squares method assuming the space group $C 2 / m$. The final R value was 0.082 . The weighting scheme was as follows: $w=1 /\left[\sigma^{2}\left(F_{o}\right)+\left(c F_{o}\right)^{2}\right]^{1 / 2}$, where σ is the standard deviation estimated from the counting statistics and c is the parameter which stands for the other types of error (Grant, Killean \& Lawrence, 1969). The value of c was determined to be 0.06 after a few least-squares calculations. The least-squares refinements in the space group

Table 1. Atomic parameters
(a) Atomic coordinates in fractions of cell edges and their standard deviations (in $10^{-3} \AA$)
BD

	x	y	z
$\mathrm{C}(1)$	$0 \cdot 3016$ (10)	$0 \cdot 0$ (0)	$0 \cdot 1497$ (10)
$\mathrm{C}(2)$	$0 \cdot 2425$ (6)	0.0935 (8)	$0 \cdot 1159$ (7)
C(3)	$0 \cdot 1254$ (7)	0.0930 (7)	0.0596 (7)
C(4)	0.0632 (9)	$0 \cdot 0$ (0)	$0 \cdot 0300$ (9)
$\mathrm{N}(1)$	$0 \cdot 4182$ (10)	$0 \cdot 0$ (0)	$0 \cdot 2048$ (12)
$\mathrm{H}(1)$	$0 \cdot 449$ (78)	0.059 (68)	$0 \cdot 183$ (79)
$\mathrm{H}(2)$	$0 \cdot 289$ (68)	$0 \cdot 154$ (68)	$0 \cdot 153$ (64)
H(3)	$0 \cdot 089$ (62)	$0 \cdot 155$ (61)	0.055 (60)
TCNQ			
C(5)	$0 \cdot 3020$ (6)	$0 \cdot 0950$ (7)	$0 \cdot 6469$ (6)
C(6)	$0 \cdot 2357$ (9)	$0 \cdot 0$ (0)	$0 \cdot 6090$ (9)
C(7)	$0 \cdot 1197$ (9)	$0 \cdot 0$ (0)	0.5558 (9)
C(8)	0.0569 (6)	0.0971 (6)	$0 \cdot 5270$ (6)
$\mathrm{N}(2)$	$0 \cdot 3607$ (6)	$0 \cdot 1662$ (6)	0.6739 (7)
H(8)	$0 \cdot 101$ (60)	$0 \cdot 158$ (60)	$0 \cdot 528$ (58)

[^0]: * The list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30302 (5 pp .). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.

